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Abstract The cornerstone of nodal spectral-element methods is the co-location of the interpolation and
integration points, yielding a diagonal mass matrix that is efficient for time-integration. On quadrilateral
elements, Legendre–Gauss–Lobatto points are both good interpolation and integration points; on triangles,
analogous points have not yet been found. In this paper, a promising set of points for the triangle that were
only available for polynomial degree N ≤ 5 are used. However, the derivation of these points is generalized
to obtain degree N ≤ 7 points, which are referred to as cubature points because their selection is based on
their integration accuracy. The diagonal-mass-matrix (DMM) triangular-spectral-element (TSE) method
based on these points can be used for any set of equations and any type of domain. Because these cubature
points integrate up to order 2N along the element boundaries and yield a diagonal mass matrix, they allow
the triangular spectral elements to compete with quadrilateral spectral elements in terms of both accuracy
and efficiency, while offering more geometric flexibility in the choice of grids. It is shown how to imple-
ment this DMM TSE for a variety of applications involving elliptic and hyperbolic equations on different
domains. The DMM TSE method yields comparable accuracy to the exact integration (non-DMM) TSE
method, while being far more efficient for time-dependent problems.

Keywords Elliptic · Hyperbolic · Mass · Lumped · Triangle

1 Introduction

Finite-element methods were initially applied to self-adjoint operators (e.g., elliptic equations), but
eventually found widespread use in non-self-adjoint operators such as those arising from hyperbolic equa-
tions. For many applications, especially those having smooth solutions (i.e., infinitely differentiable), it
is far more efficient to use high-order instead of low-order methods. On quadrilateral elements, high-
order accuracy is obtained by using the nodal polynomial basis generated from a tensor product of the
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Legendre–Gauss–Lobatto (LGL) points; these points have both good polynomial interpolation and
integration (cubature) properties. This approach was introduced by Patera [1] and dubbed the spectral
element method.

The importance of the LGL set to the diagonal-mass-matrix spectral-element method (DMM SE)
cannot be understated. In the square, a (N + 1)× (N + 1) tensor product of LGL points has a near-optimal
Lebesgue constant for the polynomial space QN = span{ξnηm, m, n ≤ N}. This small Lebesgue constant
means the LGL points generate a well-conditioned nodal basis for QN . By nodal basis, we mean the
Lagrange interpolating polynomials associated with the LGL points; these basis functions are also known
as cardinal functions. This nodal basis naturally separates into vertex, edge and interior modes, and can be
used in a standard h − p finite-element method [2]. In addition, the LGL points interpolating QN have a
quadrature formula (cubature in more than one dimension) which will exactly integrate all polynomials
in Q2N−1. The inner products that appear in the mass matrix of such a formulation will be polynomials
of up to degree 2N. Thus, a high-quality approximation of these inner products (although not exact) can
be obtained by evaluating the integrals using the LGL cubature. Combining this cubature approximation
with a nodal basis yields an accurate method with a diagonal mass matrix.

Unfortunately, points analogous to the LGL points do not appear to exist for the triangle. Thus,
spectral-element methods in triangles have focused on two different approaches. In the first approach, a
more traditional basis of vertex, edge and interior modes is used to construct C0 test functions, and cubature
formulas for the triangle are used to exactly evaluate the resultant inner products (see [3]); this approach
results in a modal triangular spectral-element method. In the second approach, a nodal basis is constructed
using nodal sets in the triangle with a small Lebesgue constant. These points must be found numerically (see
[4, 5]). They can then be coupled with exact cubature formulas, resulting in a nodal space approximation
where two different sets of points are used for interpolation (Fekete points) and integration (Gauss points)
[6, 7]); this approach results in a nodal triangular spectral-element method. Both the modal and nodal high-
order triangular finite-element approaches yield exponential (or spectral) convergence, and for this reason
are known as either spectral elements or spectral/hp elements. The difficulty that these methods face is that
they both require the inversion of a sparse global mass matrix because the interpolation and integration
points are not co-located as in the quadrilateral case. Thus, these two triangle-based approaches cannot
compete in terms of efficiency with quadrilateral-based spectral elements.

For this reason, attempts have been made to construct triangular-spectral-element (TSE) methods with
diagonal mass matrices (DMM) [8, 9, 10]. The reason for developing triangular high-order methods is
that the triangle (2-simplex) is much more geometrically flexible than quadrilaterals for constructing grids,
especially for complex domains. In the past, to make triangular finite-element methods more efficient,
mass lumping had been used which, as pointed out by Cohen et al. [8], is related to seeking co-located
interpolation and integration points. However, such points for the triangle are not easy to derive. Cohen
et al. [11] obtained points for degree N = 2 and N = 3 in the triangle by enriching the polynomial space
with additional interior modes that vanish at the edges and vertices of the elements and increase the cuba-
ture accuracy. Following similar ideas, Mulder [12] obtained points of degree N = 4 and N = 5. Because
these points are constructed with integration accuracy in mind, we refer to them as cubature points. We
will generalize the approach for deriving these cubature points to rederive the sets N = 1, ..., 5, and also
derive two new sets N = 6 and N = 7, keeping in mind that higher-degree sets can be achieved with this
approach. The main goal of this paper, however, is to show how to build numerical models for various
partial differential equations using these cubature points.

Section 2 describes the discretization of the governing equations. This section includes a description of
the construction of the cubature points, Lagrange cardinal functions, and Vandermonde matrix required
for the construction of the spatial filter. The construction of a quality filter appears to be the key to the suc-
cessful implementation of the cubature points. In Sect. 3, we present convergence rates for the DMM TSE
method and compare it with the non-DMM TSE developed in [7]. This then leads to certain conclusions
about the feasibility of this approach for possible use in various applications.
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2 Spatial discretization

In this section, we describe the spatial discretization of the governing equations by the DMM TSE method
including: derivation of the cubature points, the choice of basis functions, and the Vandermonde matrix
used for filtering. However, before discussing these issues, we first review a few relevant issues concerning
interpolation and cubature.

2.1 Interpolation in the reference element

We start by presenting some definitions and introducing our notation in the reference element T. Let
z = (ξ , η) be a point in R2, and let T be the right triangle given by

T = {(ξ , η) | − 1 ≤ ξ , η ≤ 1; ξ + η ≤ 0}.
Let PN denote the traditional space of all polynomials of degree ≤ N,

PN = span{ξnηm, m + n ≤ N}.
Here, following [8] we will be working in an augmented space of polynomials denoted by PN,M. To construct
this space, we first let P0

N denote the space spanned by the interior modes,

P0
N = {f ∈ PN | f (z) = 0 ∀z ∈ ∂T},

where ∂T is the boundary of T. The augmented space PN,M is then given by adding interior modes to the
space PN ,

PN,M = PN ∪ P0
(N+M),

for M ≥ 0. Thus, PN,M is the space of polynomials up to at most degree N along the boundary and up to
degree N + M in the interior. Note that PN = PN,0 and

PN ⊂ PN,M ⊂ P(N+M).

Also, dimPN = (N + 1)(N + 2)/2 and, for N ≥ 3, dimPN,M = dimPN + M(N − 3)+ (M + 1)/2.
Now consider a set of K points in the triangle T, {zi = (ξi, ηi), i = 1, . . . , K}, with K = dimPN,M. If the

points are non-degenerate, the nodal basis for PN,M can be defined uniquely as the cardinal functions in
PN,M that satisfy

ψi(z) = 1, if z = zi
0, if z = zj j �= i

. (1)

The nodal basis is directly related to interpolation, since for an arbitrary function q the interpolant
I(q) ∈ PN,M is given by

I(q) =
K∑

i=1

q(zi)ψi(z),

where I(q)(zi) = q(zi). The quality of the interpolation operator (and thus of the nodal basis) for a given
space and set of points is usually measured by the Lebesgue constant ‖I‖ (the L∞-norm of the interpolation
operator).

2.2 Cubature in the reference element

Now we turn to the cubature properties of the points zi. A cubature rule for these points and weights wi is
of strength d, if and only if
∫

T
g =

K∑

i=1

wig(zi) ∀g ∈ Pd. (2)
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Any set of K = dimPN,M non-degenerate points {zi} will have a cubature rule of at least strength N by
using the generalized Newton–Cotes weights,

wi =
∫

T
ψi.

Because of Eq. 1, this choice gives a quadrature rule that exactly integrates the cardinal functions,ψi. Since
these functions are a basis for PN,M, the cubature rule is exact for all g ∈ PN,M, and thus for all g ∈ PN and
so the cubature rule is at least of strength N. However, for some point sets, the Newton–Cotes quadrature
formula will integrate a larger space, and the cubature rule can be of strength 2N or higher.

As mentioned in the Introduction, for the 1-simplex and its tensor products, the LGL points of degree
N are both optimal interpolation and cubature points. Thus, a highly accurate method can be developed
resulting in a diagonal mass matrix since the interpolation and integration points are co-located; having a
diagonal mass matrix is important for achieving efficiency. On the 2-simplex, such points have not yet been
found and one must be content to choose either good interpolation or integration but not both.

It should be noted that in previous works the Fekete points have been used as integration points to
obtain a diagonal mass matrix [9, 13]; however, the cubature rule for Fekete points of degree N is only of
strength N, and thus using these cubature points is a poor approximation to the degree 2N inner products
which appear in the integral formulation of the equations. For certain problems, cubature of strength N is
insufficient to achieve exponential convergence. An example is shown in Fig. 1 for test 3 given in Sect. 3.
The dashed line denotes the solution obtained with Fekete points of degree N for interpolation, and Gauss
points for integration of strength 2N (to achieve a strength of 2N, the Gauss points are oversampled, mean-
ing there are too many of them to be used to construct a degree N nodal basis). These two sets of points
working in tandem give extremely good results, with the error remaining flat for long time-integrations; we
shall refer to this approach as the Fekete–Gauss method. In contrast, the dotted line shows that, when the
Fekete points are used for both interpolation and integration, the fact that these points are only of strength
N means that the error rises rather quickly and is significantly larger. The advantage of the latter strategy,
however, is that the interpolation and integration points are co-located; that is, they are one and the same.
This vastly simplifies the construction of the numerical algorithms because one need not interpolate onto
another set of points in order to evaluate integrals. The fact that the interpolation and integration points
are co-located means that the mass matrix is diagonal and therefore trivial to invert; a non-diagonal mass
matrix has been a thorn in the side of triangular spectral-element methods, and is the main reason why
triangles have not been able to compete with quadrilaterals in terms of efficiency.

From this discussion, it seems logical to assume that, to get around the current dilemma, requires the
construction of a new set of points for the triangle that have cubature strength close to 2N while having

Fig. 1 Test 3:
Shallow-water equations.
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reasonably low Lebesgue constants. In the next section, we describe the approach for constructing points
that satisfy both of these two criteria. The solid line in Fig. 1 shows the results for these new cubature
points; these points offer a similar accuracy to the Fekete–Gauss set while having the attractive property
of the Fekete points, that is, a diagonal mass matrix.

2.3 Computing cubature points

Finding points with optimal cubature properties has been extensively studied independently of
spectral-element applications and has a long history of both theoretical and numerical development. For
a recent review, see [14–17]. An on-line database containing many of the best known quadrature formulas
is described in [18]. One successful approach for numerically finding quadrature formulas dates to [19].
A generalized version was used recently in [20]. Newton’s method is used to solve the nonlinear system
of algebraic equations for the quadrature weights and locations of the points. Symmetry is used to reduce
the complexity of the problem. The complexity can be further reduced with a cardinal-function-based
algorithm [21].

If one consults the database and the newest numerical results in the above references, it appears that
cubature points of degree N with strength 2N or even 2N − 1 do not exist in T. Furthermore, the best
cubature formulas for T do not have sufficient points (if any) on the boundary of T. If a set of cubature
points will also be used to construct the nodal basis in the space PN,M, there must be N + 1 points along
each edge of T. This is because the nodal basis must generate vertex, edge and interior modes, and the
interior modes must be uniformly zero on ∂T (this is critical for the construction of C0 approximations
across element boundaries). If a cardinal function ψi ∈ PN,M is zero at N + 1 points on an edge of T, then
ψi(z) = 0 for any point z on that edge. This is because the restriction of any function in PN,M to that edge
is a polynomial of degree N. Thus, any ψi for zi in the interior of T is automatically an interior mode.

Since the goal of achieving a cubature formula using points that interpolate PN and are of strength
2N − 1 is not achievable, we follow the ideas first put forth by Cohen et al. [8, 11] and Mulder [12]. Instead
of working in PN , we use the enriched space PN,M with M > 0. A point set that can interpolate PN,M
necessarily contains more points than those for PN . Thus, there are more degrees of freedom that can
be used to satisfy the system of cubature equations given in (2). The resulting points, which we call PN,M
cubature points, are tabulated and compared against the two point sets used in the Fekete–Gauss method
in Table 1. The cubature points for N = 2 and N = 3 are due to Cohen et al. [8, 11] and degrees N = 4 and
N = 5 are due to Mulder [12].

To extend these results, we used the cardinal-function-cubature algorithm of [21]. Straightforward mod-
ifications were required, first to work with interpolation points for PN,M instead of PN , and second to

Table 1 Properties of the cubature points and the points used in the Fekete–Gauss method

Fekete–Gauss in PN Cubature in PN

N K K′ d ‖I‖ N M K = K′ d ‖I‖
1 3 3 2 1.00 1 0 3 1 1.00
2 6 6 4 1.67 2 1 7 3 1.45
3 10 12 6 2.11 3 1 12 5 2.21
4 15 16 8 2.58 4 1 18 7 3.75
5 21 25 10 3.19 5 2 30 10 5.23
6 28 36 12 4.08 6 3 46 12 7.40
7 36 46 14 4.78 7 3 51 14 7.50

N and M determine the polynomial space PN,M , K is the number of interpolation points, K′ the number of integration points,
d the strength of the integration points and ‖I‖ is the Lebesgue constant of the interpolation points
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impose that there be N + 1 points along each edge of T (for a total of 3N points along the perimeter). We
were able to reproduce the previously computed results for degrees N ≤ 5 along with the two new degrees
N = 6 and N = 7, which we list in Table 2. In fact, higher degrees of N for either triangles or tetrahedra
are achievable with this procedure.

Table 1 shows the number of interpolation points, K, integration points, K′, and Lebesgue constant,
‖I‖, for both the Fekete–Gauss and cubature points as a function of the polynomial degree, N. The first
thing to notice about these two sets is that the Fekete–Gauss points have superior Lebesgue constants
than the cubature points. However, this should not be surprising, since the Fekete points are constructed
by minimizing interpolation error, and the Lebesgue constant is a measure of the quality of the points to
achieve good interpolation (a lower Lebesgue constant implies better interpolation).

2.4 Evaluating the nodal basis functions

To define the local operators used to construct the global approximation of the solution, we begin by
decomposing the domain � into Ne non-overlapping triangular elements �e such that

� =
Ne⋃

e=1

�e.

We then further map the arbitrary triangles�e into the reference right triangle T. To perform differentiation
and integration operations, we introduce the nonsingular mapping x = �(ξ) that defines a transformation
from the physical Cartesian coordinate system, x, within each triangle �e to a local reference coordinate
system, ξ , in the reference right triangle T (see [7] for details on this mapping for curved elements in R3).

Let us now represent the local element-wise solution q by its nodal expansion in PN,M, as

q(ξ) =
K∑

k=1

q(ξk)ψk(ξ),

Table 2 The polynomial
order, N, number of
cubature points, and x and
y values of the first two
barycentric coordinates of
the cubature points
corresponding to this
cubature weight. The
third barycentric
coordinate is defined such
that the all three
coordinates add up to one

N Number x y weight

6 1 0.3333333333333333 0.3333333333333333 0.0340548001889250
3 0.0000000000000000 0.0000000000000000 0.0004842730760035
3 0.4207074595153500 0.1585850809708500 0.0177785008242257
3 0.6975345054486999 0.1512327472752000 0.0122972050038037
3 0.5000000000000000 0.0000000000000000 0.0032466690489985
3 0.0484777152220000 0.9030445695557999 0.0080400015624530
6 0.1009333864342500 0.0000000000000000 0.0020317308565252
6 0.2688476619807000 0.0000000000000000 0.0030227165121272
6 0.3694234213017000 0.0497413284926000 0.0171924926133297
6 0.2841797219605000 0.1685399500274000 0.0202547332903523
6 0.1811513191269000 0.0548913882427000 0.0142325352719635

7 3 0.0000000000000000 0.0000000000000000 0.0002270804834076
3 0.1671653533624000 0.6656692932752000 0.0215081779064107
3 0.4799846082104500 0.0400307835790500 0.0142371781018152
3 0.2805588962964500 0.4388822074071001 0.0236326025323162
3 0.9336675298564999 0.0331662350717500 0.0041445630524500
6 0.0797278918581500 0.0000000000000000 0.0011906918877981
6 0.2013629039284500 0.0000000000000000 0.0020909447779454
6 0.3789551577387000 0.0000000000000000 0.0026709648805728
6 0.3428699782753000 0.1406581918813000 0.0211675487584138
6 0.2809834462433500 0.0493368139566500 0.0139626184559205
6 0.1321756636294500 0.0499184036996000 0.0103757635344830
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where K = dimPN,M and the nodal basis functions ψk are defined as in (1). For the points (ξi, ηj), we
choose the newly derived cubature points which, while allowing for simple evaluation of the nodal basis
functions, complicate any other operation such as the evaluation of their derivatives. Here, we follow [9]
and represent the nodal basis functions in terms of the Proriol polynomials [22, 23] which in T are an
orthogonal basis for P(N,0). Stable recurrence relations can be used to evaluate these polynomials and their
derivatives [24]. Note that these polynomials are traditionally denoted with a double index (m, n) repre-
senting the top degree in ξ and η. But here, we use a single index and denote them by ϕi, i = 1, . . . , dimPN .
To generate an easily computable basis for PN,M, we need to add additional basis functions for the interior
modes in PN,M that are not in PN . For these polynomials we use the formulas given in [2, 24], denoted by
ϕi, i = (dimPN + 1), . . . , K.

2.5 Filtering the high-frequency waves

As with most high-order methods, when solving nonlinear problems, some filtering is needed to control
the accumulation of aliasing errors. The ability to selectively filter only the highest wave numbers is an
advantage of the spectral-element method. However, it does require that we use an expansion in only
orthogonal Proriol polynomials, since a nodal expansion or an expansion that involves interior modes will
not be orthogonal, and thus will not isolate the high-frequency content to only the high-wave-number
modes.

Thus, to implement filters, we need to compute the expansion of the local element-wise solution q in
terms of only orthogonal Proriol polynomials. In order to prevent confusion with the augmented basis for
PN,M, here we denote the basis for P(N+M) by gi, i = 1, . . . , K1, where K1 = dimP(N+M).

Since q ∈ PN,M ⊂ P(N+M), q has a unique expansion in terms of g. Denoting this expansion by

q(ξi, ηi) =
K∑

k=1

q̃kRi,k, (3)

where q̃k are the Proriol coefficients of q and R is the rectangular Vandermonde matrix for the basis g,
allows us to define the K × K1 rectangular Vandermonde matrix R by

Ri,k = gk(ξi, ηi).

The appropriate right inverse of R for filtering is constructed as follows: given the set of point values
q(ξi, ηi), the expansion in terms of ϕ (the basis for PN,M) can be computed by applying V−1, the inverse
of the Vandermonde matrix. Because this polynomial is in P(N+M) and thus has a unique expansion in
terms of g (the basis for P(N+M)), we have a mapping from the set of point values q(ξi, ηi) to the expansion
coefficients q̃; let us denote this map by Rr. Applying (3) to expansion coefficients computed with Rr must
recover the original grid-point values, and thus RRr = I, where I is the identity matrix. In matrix form, we
now write (3) as

q = R q̃ q̃ = Rr q. (4)

We can now apply filters to q directly to its Proriol coefficients in P(N+M). There are many possible
filters, but here, based on past experience [7, 25], we choose the Boyd–Vandeven transfer function [26]
which we denote by 
. Applying the filter to the amplitudes and then transforming to nodal (physical)
space is achieved in the following matrix-vector multiply operation

qF = F q,

where

F = R
Rr (5)
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is the K × K filter matrix applied every time step at full strength. However, in the original Boyd–Vandeven
filter only the highest modes (polynomials of degree N + M) are completely annihilated, and this may
be too severe for either quadrilateral spectral elements or exact integration triangular spectral elements.
Thus, the issue with the new cubature points is how to view the approximation space which these points
span. For example, should one take the degree to be the degree of the edge modes N, or the degree of the
interior modes, N + M? Let us denote the order of the space which the filter acts on as NF . In Table 3 we
show the values used for filtering the cubature points. As an example, for P7,3 the interpolation functions
of the cubature points contain some degree 10 (N + M) modes. The filter then acts on all the degree 9
and 10 modes. Unfortunately, we currently have no theory to support our filter choices; though the values
listed in Table 3 were found experimentally, they appear to work for a variety of applications.

2.6 Integration and local element-wise operators

In order to complete the discussion of the local element-wise operations required to construct discrete
spectral-element operators, we must lastly describe the integration procedure required by the weak
formulation of all Galerkin methods. For any two functions f and g, the integration I proceeds as follows

I[f , g] =
∫

�e

f (x)g(x)dx =
K∑

i=1

wi | J(ξi) | f (ξi)g(ξi), (6)

where w are the cubature weights and J the Jacobians of the transformation from physical space to the
local space of the reference element. Note that, for straight-edged triangles, J and all other metric terms
are constant; not so for curved elements.

To simplify the description of the numerical algorithm, we define the following local element operators:

Me
ij =

∫

�e

ψi(x)ψj(x)dx, (7)

Le
ij =

∫

�e

∇ψi(x) · ∇ψj(x)dx, (8)

De
ij =

∫

�e

ψi(x)∇ψj(x)dx, (9)

representing the mass, Laplacian, and differentiation matrices, where i, j = 1, . . . , K.
Equation 6 allows us to rewrite (7), (8), and (9) as

Me
ij = wi | J(ξi) | δij, (10)

Table 3 The indices N, M
for the polynomial space,
the number of cubature
points K, and the highest
mode unaffected by the
filter, NF

Filtering for PN,M

N M K NF

1 0 3 2
2 1 7 3
3 1 12 4
4 1 18 5
5 2 30 6
6 3 46 8
7 3 51 8
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Le
ij =

K∑

i=1

wi | J(ξi) | ∇ψi(ξi) · ∇ψj(ξi), (11)

De
ij = wi | J(ξi) | ∇ψj(ξi), (12)

where δij is the Kronecker delta. As (10) shows, having the interpolation and integration points, ξi, co-
located results in the diagonal mass matrix, Me, which significantly simplifies the construction of the global
matrix problem and its solution.

2.7 Formulation of the method

We follow the generalized diagonal-mass-matrix spectral-element formulation outlined in [9]. This method
is based directly on the original DMM spectral element method proposed in [27], except that the domain
is decomposed into triangular instead of quadrilateral elements and we are working in the space PN,M.
The method proceeds as follows: by piecing together appropriate nodal basis functions in neighboring
elements, a set of global functions can be constructed that are C0 and piecewise polynomial. These global
functions are used as the test functions in the weak form of the equations of interest, and the unknowns
are expanded in terms of these global functions. The resulting integral equations are decomposed as a sum
of integrals over each element. Finally, the quadrature rule associated with the points used to construct
the cardinal function basis is used to evaluate each integral. Because of the nodal nature of the global
functions, this results in much simplification, including a diagonal mass matrix.

The result is a method that can satisfy the equations globally by simply summing the local element
matrices, Eqs. 10–12, to form their global representation [27]. This summation procedure is known as
the global assembly or direct stiffness summation. Let us represent this direct stiffness summation (DSS)
procedure by the summation operator

Ne∧

e=1

with the mapping (i, e) −→ (I), where i = 1, . . . , K are the local element grid points, e = 1, . . . , Ne are the
spectral elements covering the global domain, and I = 1, . . . , Np are the global grid points. Applying the
DSS operator to the local element matrices results in the following global matrices:

M =
Ne∧

e=1

Me, L =
Ne∧

e=1

Le, D =
Ne∧

e=1

De,

where M, L, and D are matrices of dimension Np × Np, and M is diagonal and therefore trivial to invert.

2.7.1 Poisson equation on the plane

For the Poisson equation

∇2q = f , (13)

we define its variational statement as: find q ∈ H1
0(�)∀ψ ∈ H1 such that

− Lq = f , (14)

where H1
0(�) is the space of all functions (with zero Dirichlet boundary conditions) with functions and first

derivatives belonging to L2(�)—the space of all functions that are square integrable over �. The domain
used for this test is x ∈ [0, 1] × [0, 1].



316 J Eng Math (2006) 56:307–322

2.7.2 Advection equation on the sphere

For the advection equation on the sphere

∂q
∂t

+ u · ∇q = 0, (15)

we define the variational statement as: find q ∈ H1(�)∀ψ ∈ H1 such that

∂q
∂t

= −M−1uTDq. (16)

On the sphere, however, no additional boundary conditions are required other than periodicity which is
satisfied by the connectivity of the grid.

2.7.3 Shallow-water equations on the sphere

The shallow-water equations on the sphere are

∂q
∂t

= S(q), (17)

S(q) = −
( ∇ · (φu)

u · ∇u + f (x × u)+ ∇φ + μx

)
, (18)

where q = (φ, uT)T , the nabla operator is defined as ∇ = (∂x, ∂y, ∂z)
T , φ is the geopotential height (φ = gh,

where g is the gravitational constant and h is the vertical height of the fluid), u = (u, v, w)T is the Cartesian
wind velocity vector, f = 2ωz/a is the Coriolis parameter, and (ω, a) represent the rotation of the Earth
and its radius, respectively.

The term μx, where x = (x, y, z)T is the position vector of the grid points, is a fictitious force introduced
to constrain the fluid particles to remain on the surface of the sphere (see [7] for details). Note that this
equation set represents an initial value problem with no boundary conditions; the only condition required
is that of periodicity which is imposed by the geometry of the spherical domain.

The variational statement of the problem is: find (φ, uT)T ∈ H1(�)∀ψ ∈ H1 such that

∂φ

∂t
= −M−1DT (φu), (19)

∂u
∂t

= −M−1uTDu − f (x × u)− M−1Dφ − μx, (20)

where for φ and u we choose the polynomial space PN,M-PN,M.

3 Numerical experiments

For the numerical experiments, we use the normalized L2 error norm

‖q‖L2 =
√∫

�
(qexact − q)2d�
∫
�

q2
exact d�

to judge the accuracy of the TSE methods. In addition, we compute the order of convergence as an
average convergence rate computed over all the grid refinements, where at each grid refinement, nI , the
convergence rate is defined as

rate = log
[
errornI+1/errornI

]

log
[
nI/(nI + 1)

] .
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The grid refinement parameter nI determines the number of elements as follows: on the plane the number
of elements are NE = 2n2

I and on the sphere NE = 20n2
I .

Three equation sets are used to judge the performance of the DMM TSE method: elliptic (linear scalar)
and hyperbolic equations (linear scalar and nonlinear vector). The elliptic (test 1) is solved on the plane,
while the hyperbolic equations (tests 2 and 3) are solved on the sphere. The reason why the topology of
the domain is important is that a domain without curvature (such as the plane) can be tiled completely
with straight-edged triangles, while a domain with curvature must be tiled by curved triangles; the metric
terms of straight-edged triangles are constant per element, whereas for curved elements the metric terms
vary with the position of the interpolation/integration points within the element. Thus, the application of
DMM TSE method on a curved manifold represents a very stringent test for judging the performance of
this new method.

In the next sections, we compare the results of the DMM TSE method using cubature points with
those of the Fekete–Gauss method. The Fekete–Gauss method has been optimized to both interpolate
and integrate with high accuracy. Therefore, these points represent the best possible solutions that one can
achieve with nodal triangular spectral elements. It is true that, for curved elements, the metric terms are no
longer constant and therefore, for exact integration, one would require perhaps up to O(3N) integration
accuracy; however, because the difference between O(3N) and O(2N) integration is minimal, we shall
refer to the Fekete–Gauss O(2N) as the best possible solution that one can achieve with nodal triangular
spectral elements.

Of special interest is whether or not the cubature points yield exponential (spectral) convergence; in
other words, we are particularly interested if the following relation holds

error ∝ O(xN+1),

which states that the error decreases exponentially with grid refinement (x) for increasing polynomial
order N. Thus for a method to possess spectral accuracy, a convergence rate of order (N + 1) is required
for all values of N.

3.1 Test 1: Poisson equation on the plane

The Poisson equation has the exact solution

qexact = xa(1 − x)byc(1 − y)d,

when the forcing function, f , is used to satisfy (13). The coefficients a, b, c, and d control the polynomial
degree of the solution and for simplicity we take a = b = c = d = 3 which results in a twelfth-order
polynomial, which is more than sufficient to judge the accuracy of up to seventh-order cubature points.
Homogeneous Dirichlet boundary conditions are used, and the Laplacian operator is inverted using the
conjugate-gradient method with point Jacobi iteration.

3.2 Test 2: Advection equation on the sphere

The initial condition used for the advection equation is

q(λ, θ , 0) = e−r2/r2
i ,

where

r = a cos−1 (sin θi sin λ+ cos λi cos θ cos(λ− λi)) , ri = a
3

,

a is the radius of the sphere, and (λi, θi) is the initial position of the wave in spherical coordinates; the
exact solution can be found in [28]. The time-integration is handled by the explicit second-order backward-
difference formula proposed in [29].
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While this test case also involves a linear scalar equation, as in test 1, the difference is that this equation
is now hyperbolic with the additional degree of difficulty imposed by the curved topology of the spherical
domain; curvature in the domain has major consequences because the metric terms (e.g., Jacobians) are
no longer constant.

3.3 Test 3: Shallow-water equations on the sphere

To further test the accuracy of the DMM TSE method, we use a system of nonlinear hyperbolic
equations, that is, the shallow-water equations on a rotating sphere. Similarly to test 2, this test also
poses the additional difficulty of using curved elements to allow the elements to tile the surface of the
sphere.

The initial conditions used are those of case 2 in the Williamson et al. [28] shallow-water test suite. Once
again, the time-integration is handled by the explicit second-order backward-difference formula.

3.4 Summary of results

Figures 2–4 show the normalized L2 error as a function of grid resolution, nI , for various polynomial
degrees for the Fekete–Gauss and cubature points for tests 1, 2, and 3, respectively.

For test 1 (elliptic equation on the plane), the cubature points perform better than the Fekete–Gauss
method for some degrees of N but do not do as well for others, especially for N ≥ 6. In fact, for this
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Fig. 2 Test 1: Poisson equation. The normalized q L2 error for the (a) Fekete–Gauss and (b) cubature points TSE methods
as a function of grid refinement, nI , for the polynomial degrees N = 1, . . . , 7 with their associated convergence rates
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Fig. 3 Test 2: Advection equation. The normalized φL2 error for the (a) Fekete–Gauss and (b) cubature points TSE methods
as a function of grid refinement, nI , for the polynomial degrees N = 1, . . . , 7 with their associated convergence rates
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Fig. 4 Test 3: Shallow-water equations. The normalized φ L2 error for the (a) Fekete–Gauss and (b) cubature points TSE
methods as a function of grid refinement, nI , for the polynomial degrees N = 1, . . . , 7 with their associated convergence rates

particular type of equation, it makes little sense to use the cubature points over the Fekete–Gauss points
because both methods require the inversion of a Laplacian and for this reason the cubature points have no
advantage; note that the discrete weak-form Laplacian operator is in fact the well-known stiffness matrix.

For test 2 (advection equation on the sphere), both methods failed to yield spectral convergence, even
though both methods converged at a rapid rate. However, both methods yield similar convergence rates
which is a good result, because it means that the cubature points behave similarly to the Fekete–Gauss
points; recall that the Fekete–Gauss points represent the best we can do with high-order nodal triangles.

For test 3 (shallow-water equations on the sphere), the results of the cubature points are similar to
those of the Fekete–Gauss method (they both yield spectral convergence); this seems to indicate that the
cubature points are a good replacement of the Fekete–Gauss points for systems of nonlinear hyperbolic
equations.

From these results, one can see that overall the cubature points do quite well compared to the
Fekete–Gauss points. The main reason for considering the cubature points is that they yield a diago-
nal mass matrix, which allows for the construction of efficient time-integration algorithms. To emphasize
this point, we show in Fig. 5 the L2 error (Fig. 5a) and wall-clock time in seconds (Fig. 5b) as a function of
polynomial order for test 3 for both the Fekete–Gauss and cubature-point methods using grid refinement
level nI = 3; these results were obtained on a Dell PC with an Intel Xeon 1.8 gigahertz processor. Figure 5a
shows that both methods yield spectral convergence, and the errors are almost identical for both methods;
however, Fig. 5b shows that the Fekete-Gauss points require far more computing time to achieve these
results. The cost of the Fekete–Gauss method increases exponentially with either increasing grid resolution,
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Fig. 5 The (a) normalized φ L2 error and (b) wallclock time as a function of polynomial order, N, for the Fekete–Gauss and
cubature points TSE methods for a five day integration of test 3 using nI = 3 grid refinement
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nI , or polynomial degree, N. This is due to the Fekete–Gauss method having a sparse global mass matrix,
which must be inverted at every time step. Giraldo and Warburton [7] showed how to construct this type
of nodal triangular spectral element and even with the use of static condensation and conjugate-gradient
iterative solvers the cost of the method could not be brought down. In contrast, the cubature points TSE
method, having a diagonal mass matrix, allows for very simple and extremely efficient time-integration
strategies, precisely because it does not involve the inversion of a mass matrix. In this paper, we have
only discussed the repercussions of a diagonal mass matrix on the efficiency of explicit time-integrators;
however, these effects are most important in the construction of semi-implicit time-integrators which are
used to increase the allowable time-step that a model can use while maintaining stability. Semi-implicit
time-integrators play an important role in production-type models such as those used in numerical weather
prediction; see [30].

Finally, in Fig. 6 we show the accuracy per computational cost for both the Fekete–Gauss (Fig. 6a) and
cubature points (Fig. 6b) for test 3 and orders N = 1, ..., 7. The best results are those nearest the bottom
left corner of the plots; that is, this means that the method yields high accuracy (low L2 error) with little
computational cost. For the Fekete–Gauss points, the polynomial orders N = 4 and N = 6 offer the best
compromise between accuracy and efficiency. Although the results for these points are not very easy to
interpret, one thing is clear: orders N ≤ 3 are inferior to orders N ≥ 4. On the other hand, the results
of the cubature points are much simpler to interpret. Note that orders N ≤ 2 are not very competitive
with the high order points (N ≥ 3). Orders N = 3 and N = 4 give good results, but clearly orders N ≥ 5
are by far the best. From these three orders, as in the Fekete–Gauss points, order N = 6 offers the best
compromise between accuracy and efficiency. In summary, the main point of this figure is that high order
(in this case N = 6) is clearly far more efficient than the lower-order methods. For example, to get an
accuracy of 1 × 10−6, the order N = 6 points will cost far less than the other polynomial orders.
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Fig. 6 The normalized φ L2 error as a function of wallclock time for (a) the Fekete–Gauss and (b) cubature points for a five
day integration of test 3 using N = 1, . . . , 7

4 Conclusions

We have presented a promising new set of cubature points on the triangle which can be used both for inter-
polation and integration. Because the interpolation and integration are co-located, we obtain a diagonal
mass matrix (DMM). We have presented implementation strategies of this DMM triangular spectral-
element (TSE) method for elliptic and hyperbolic equations on planar and spherical surfaces and com-
pared the cubature points to the usual strategy of employing one set of points for interpolation (Fekete)
and another set for integration (Gauss) which we call Fekete–Gauss TSE; this method, however, does
not yield a diagonal mass matrix. The cubature points compare quite favorably with the Fekete–Gauss
points, especially for the system of nonlinear hyperbolic equations. In addition, these good solutions can
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be obtained quite cheaply with the cubature method because they yield a diagonal mass matrix which
allows for simple and efficient time-integration strategies; this may now allow the triangular SE method
to compete in terms of both accuracy and efficiency with the quadrilateral SE method, while allowing far
more flexibility in the choice of adaptive unstructured grids. Because the cubature points yield a DMM
TSE, in future work we shall exploit this property to construct semi-implicit time-integrators for various
hyperbolic equation sets on adaptive unstructured grids including the Euler equations, and the primitive
equations for both the atmosphere and ocean.
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